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Abstract

The paper concerns the issue of progressive development of shear bands in the problem of coupled deformation and

¯uid di�usion in porous media. The governing continuum equations are based on porous media theory applied to an

elastic±plastic solid skeleton at small deformations. In the localization analysis, the concept of regularized discontinuity

is extensively used at the application to the conservation laws of momentum and mass. As a result, we obtain a coupled

localization condition that is preserved also in the numerical formulation. Attention is also given to the design of an

overall numerical algorithm to solve the coupled set of non-linear ®nite-element equations that arise from the element-

embedded band approach. In order to arrive at the proper design of the algorithm, we resort to a staggering between the

continuous (global) problem and the discontinuous (element) problems. In the numerical examples, the algorithm is

shown to be able to capture onset of localization as well as the progressive development of shear bands. In the examples,

we study the in¯uence of local and global (boundary) drainage conditions, and the internal friction angle to the failure

mechanisms. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a two phase porous material, such as ¯uid saturated soil material, the behavior in the failure situation
is in¯uenced by the interaction between the solid and the ¯uid phase. For example, it is well known that the
¯uid phase plays an important role in failures in experimental tests, as reported by Han and Vardoulakis
(1991), Vardoulakis (1996a,b), Finno et al. (1997) as well as in failures of natural soil slopes (Rankka, 1994;
�Oberg, 1997; Kirkebù, 1994) and other types of structures involving soil. Hence, for a fully ¯uid saturated
soil this hydro-mechanical coupling is strong and needs to be addressed in the modeling situation. In this
context, we note that the two-phase interaction introduces a rate dependency into the problem, although a
rate-independent model is used to model the (underlying) e�ective material. In analogy with viscous
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one-phase regularization (Needleman, 1988), this rate dependency naturally introduces a length scale that
may limit the width of the shear band (Loret and Prevost, 1991). However, this ``interaction induced
regularization'' obviously depends strongly on the permeability parameter, and it should therefore not be
the sole regularization mechanism in an analysis. Nevertheless, due to the ¯uid phase interaction, the
pathological mesh dependency in the coupled problem may not be so dramatic as in the corresponding
single phase situation, as reported by Schre¯er et al. (1996, 1998) and Panesso et al. (1998).

To remedy the pathological mesh dependency in the problem, various ``localization limiters'' have been
proposed in the literature. Examples of approaches which preserve the continuity of the deformation ®elds
are rate-dependent visco-plastic, non-local, micro-polar and gradient models. A review of these approaches
can be found in De Borst et al. (1993). In contrast to the formulations based on continuous ®elds, one may
augment the conventional continuum with a local regularization that becomes e�ective only in the post-
localized regime. Following the development in the works of Larsson et al. (1993), Simo et al. (1993b),
Larsson and Runesson (1996a), this means to introduce a regularized strong discontinuity, which leads to
the establishment of cohesive zone type of models, where the regularization preserves the coupling between
the pre- and post-localized behavior. Basically, the properties of the cohesive zone, such as the condition for
onset of localization and orientation of the localization band, are described by the acoustic tensor. The
formulation in the present paper falls within this framework.

Numerical simulations on the hydro-mechanically coupled problem with emphasis on localization is
presented in the work by Loret and Prevost (1991). For the continuum model they ®nd that for the oc-
currence of stationary discontinuities, the localization condition for the porous media is identical to that of
the underlaying drained, ``e�ective'', material. The discretized problem is regularized using a visco-plastic
material model. More recently, Ehlers and Volk (1997), presented a formulation where the problem is
regularized with Cosserat theory with which they apparently obtain good results. A possible drawback in
these models is the re-meshing procedure that is required in order to resolve the size of the localization zone.
This di�culty also carries over to the formulation in Steinmann (1999), where an interface model is sug-
gested on the basis of an interface law for the ¯uid phase, where the interface ¯uid supply follows from an
assumption for the interface excess pore pressure gradient. Basically, the interface ¯uid supply is motivated
by a ``projection'' argument of the Darcy law from the continuous to the discontinuous response. A for-
mulation based on strong discontinuities is also proposed in Armero and Callari (1999), where they follow
the ideas of Coussy (1995) to assume discontinuities in skeleton displacement and ¯uid di�usion (¯uid
content). In this one-dimensional formulation, the assumed discontinuities are embedded into the ®nite
elements.

In the present paper, it is proposed to capture the development of regularized discontinuities in the
displacement and pressure ®elds on the basis of the concept of regularized strong discontinuity (Simo et al.,
1993b; Larsson and Runesson, 1996a). In the present case of the two-phase continuum, the concept of
regularized discontinuity is extensively exploited at the application to the conservation laws of momentum
and mass, as discussed in Larsson and Larsson (2000). As a result, we obtain a localization condition that
couples the displacement and pressure discontinuities. On the numerical side, a ®nite-element (FE) pro-
cedure for the mixture of soil and pore ¯uid is proposed on the basis of the ``embedded approach'', where
the FE interpolation allows for discontinuities within the ®nite elements. The procedure falls within the
range of enhanced assumed strain methods, where the FE equations are derived from a three-®eld varia-
tional formulation, as discussed by Simo and Rifai (1990). From the pertinent orthogonality condition, a
coupled set of FE equations are obtained, where the coupling between continuous and discontinuous re-
sponse is obtained at the element level. In the 4 present formulation, the orthogonality condition preserves
traction continuity and continuity of mass balance across the element embedded band in an integrated
fashion. Under certain circumstances, the coupled localization condition may be shown to be preserved by
the ®nite-element formulation, and the element response may be characterized like in the continuum sit-
uation.
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Attention is also given to the design of an overall FE algorithm to solve the coupled set of non-linear FE
equations that arise from the element-embedded band approach. The discontinuities are conveniently
treated as local element enhancements of the FE interpolations leading to a set of local element equations.
In order to arrive at the proper design of the algorithm, we resort to a staggering between the continuous
(global) problem and the discontinuous (element) problems. At the application to the numerical examples,
the algorithm is shown to work well in terms of its ability to capture onset of localization as well as post-
localized regime. In the examples, we study the in¯uence of local (intrinsic permeability) and global
(boundary) drainage conditions to the failure mechanisms and also the ¯ow and pressure in the localized
zones.

2. Governing equations for elastic±plastic porous media

2.1. Balance equations

The theory of porous media is, here, understood as mixture theory combined with the volume fraction
concept. The constituents are denoted ca, with a � s for the solid and a � f for the ¯uid phase, and the
volume fractions na�x; t� are de®ned as the ratio between the local constituent volume va and the bulk
mixture volume v. Thereby, the bulk density (per unit bulk volume of mixture) is obtained as q̂a � naqa,
where qa is the intrinsic density associated with ca. We further assume that small deformations are at hand
and that each constituent is intrinsically incompressible, i.e., Dfqf=Dt � Dsqs=Dt :� 0. Moreover, it is as-
sumed that no voids can develop during deformation, whereby the volume fractions must satisfy the sat-
uration constraint ns � n � 1, where n � nf is the porosity and ns the corresponding volume fraction of the
soil skeleton. The momentum balance for such a porous media may be stated as follows:

$ � �r� q̂g � 0; �1�
where �r is the total stress and q̂ is the saturated density of the soil ¯uid mixture. Mass conservation during
deformation of the porous medium, is expressed as

$ � _u� $ � vd � 0; �2�
where vd � n�vf ÿ vs� � nvr is the Darcian velocity. We note that vd represents the relative volumetric ¯ow
of ¯uid such that vd � n is the volume of ¯uid passing through a surface following the skeleton with normal n

per time unit.

2.2. Constitutive equations

From thermodynamic arguments, as discussed in Larsson and Larsson (2000), constitutive equations are
established for the e�ective stress r and the e�ective drag force between constituents arising from the
relative movement. In particular, we choose the constitutive equation for the e�ective drag force such that
Darcy's law is recovered, i.e.,

vd � ÿk$p; �3�
where k is the Darcian permeability coe�cient for isotropic permeability and p, the excess ¯uid (intrinsic)
pore pressure. As to the e�ective stress, we establish the appropriate constitutive relation within the rate-
independent plasticity framework. For this purpose, we de®ne the Helmholtz free energy density (per unit
volume) as

ws�e; ep; j� � 1
2
�eÿ ep� : Ee : �eÿ ep� � w; w�j� � 1

2
Hj2; �4�
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where Ee is the elastic sti�ness tensor, e is the total strain, ep is the total plastic strain, j is a hardening
variable and H denotes the hardening/softening modulus. The equations of state are

r � ows

oe
� Ee : �eÿ ep�; K � ÿ ows

oj
� ÿHj; �5�

where K is the dissipative stress conjugated to j. Furthermore, we introduce the convex, but not necessarily
smooth, set B of admissible states:

B � fr;K : u�r;K�6 0g; �6�
where u�r;K� � 0 is the state boundary surface. Constitutive rate equations for ep and j are de®ned via the
evolution rules:

_ep � _k
ou�

or
; _j � ÿ _k

ou
oK

; �7�

where k is the plastic multiplier which is determined from the Kuhn±Tucker conditions:

_k P 0; u6 0; _ku � 0: �8�
In Eq. (7), we have included the possibility of a non-associated plastic ¯ow through the plastic potential
function u�. From the condition of linearized (un)loading it may be shown in a standard fashion that the
linearized response for the e�ective stress can be written as

_r � E : _e; E � Eep � Ee ÿ 1
h Ee : f� 
 f : Ee �P�;

Ee �E�;
�

�9�

where f :� ou=or and f� :� ou�=or and (P) and (E) denote plastic and elastic loading, respectively.
Moreover, the plastic modulus h is de®ned as h � f : Ee : f� � H .

3. Regularized discontinuous ®elds in a porous medium

3.1. Concept of regularized discontinuous ®elds

Our aim is to develop a FE formulation that can handle the existence of a discontinuity for the hydro-
mechanically coupled problem described above. To this end, let us consider the possibility for the existence
of a regularized discontinuity the displacement and the excess pore pressure ®elds of the coupled problem
Fig. 1. We follow the developments in Larsson and Larsson (2000), where the concept of regularized

Fig. 1. Body B with boundary oB divided by a characteristic surface C. The regularization band X of width d is centered on C.
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discontinuity is extensively exploited. In brief, this means to introduce a band of width d to construct
regularized derivatives of the Heaviside function. These regularized functions are consistent in the sense
that they describe qualitatively the true derivatives in a distributional sense as d tends to zero. Hence, the
length d should be small in relation to a characteristic dimension of the structure. In practice, the lower
limit of d is bounded by the computer precision. We note that the present formulation based on the concept
of regularized strong discontinuities becomes related to the formulation of Rudnicki (1983). The essential
di�erence is the introduction of a length scale, and that we do not consider a priori a zone of weakened
material.

We assume that the discontinuities occurs across the internal surface C with unit normal n. This surface
sub-divides B into the sub-domains Bÿ and B� in such a way that n is pointing from Bÿ to B�, as shown in
Fig. 1. It is then assumed that the velocity ®eld of the skeleton takes on the structure:

_u�x; t� � _uc�x; t� � s _ut�t�HC�x�; �10�

where uc is the continuous portion of the skeleton displacement and s _ut is the spatially constant jump of u

across C. Moreover, HC is the Heaviside function de®ned as

HC � 0 if x 2 Bÿ;
1 if x 2 B�:

�
�11�

In order to regularize the Dirac delta distribution dC � rHC, which has meaning only in a distributional
sense, we introduce a thin zone X � B along C with the width d, as shown in Fig. 1. Within this zone we
de®ne x0 2 C and x 2 X such that x � x0 � nn (with ÿd=26 n6 d=2). The strictly discontinuous Heaviside
function is then replaced by a ramp function in the coordinate n, whereby the regularized function dC;r is
expressed as

dC;r � f �n�
d

n with f �n�x�� � 1 if x � x0 2 C;
0 if x � x� 2 B n C:

�
�12�

Let us also consider the regularization of the divergence $ � dC;r and the gradient $�$ � dC;r�. We then
regularize the function f �n� based on the dashed linear functions across X indicated in Fig. 2a. As a result,
we obtain from Eq. (12) the relation,

Fig. 2. (a±c) Functions f, g and h as the result of successive regularizations.
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$ � dC;r :� 1

d2
g�n� with g�n�x�� �

2 if x � xÿ 2 Bÿ n C;
ÿ2 if x � x� 2 B� n C;
0 otherwise:

8<: �13�

As to the term $�$ � dC;r�, we regularize the function g�n� based on Fig. 2b and Eq. (13), whereby we obtain

$�$ � dC;r� :� 1

d3
h�n�n with h�n�x�� � ÿ4 if x � x0 2 C;

0 if x � x� 2 B n C:

�
�14�

We are now in the position to express the strain rate _e pertient to the proposed regularization. Hence, in
view of Eqs. (10) and (12), we obtain

_e � �$
 _u�sym � _ec � f
d
�n
 s _ut�sym

; _ec � �$
 _uc�sym
: �15�

Moreover, upon invoking Eq. (15) into the constitutive relation (9), we ®nd that the e�ective stress rate ®eld
_r take the structure,

_r � _rc � f s _rt with s _rt � _r�x0� ÿ _r�x��; �16�
where

_rc � E�x�� : _ec; s _rt � sEt : _ec � 1

d
�E�x0� � n� � s _ut: �17�

In Eq. (17), we remark that s _rt denotes the consequent jump of the stress rate due to the constitutive
response and the regularized displacement discontinuity. Moreover, we introduced sEt � E�x0� ÿ E�x�� as
the jump in the tangent sti�ness. We note that E�x0� and E�x�� are generally di�erent, i.e., �Ee or Eep�,
depending on whether elastic or plastic loading takes place.

As to the ¯uid pore pressure, we are guided by the e�ective stress principle, i.e., �r � rÿ p1, to adopt the
crucial assumption that p has the same structure as the e�ective stress ®eld. We thus assume

_p � _pc � f s _pt with s _pt � _p�x0� ÿ _p�x��; �18�
where pc is the continuous portion of the pressure ®eld. The possible development of a jump in pressure in
the post-localized regime may also be regarded as a consequence of mass balance. That is, for the mass
balance Eq. (2) to be satis®ed, the term $ � vd must have an identical structure as the volumetric skeleton
strain. If the Darcy law is employed, this in turn requires the chosen structure of the pore pressure in Eq.
(18). Hence, by combining Eqs. (17) and (18), the total stress rate ®eld _�r can be written

_�r � _�rc � f s _�rt; �19�
where

_�rc � _rc ÿ _pc1; s _�rt � s _�rtÿ s _pt1: �20�
Moreover, from Eqs. (3) and (18), it follows that the Darcian velocity has the structure,

vd � vd;c � gsvdt with vd;c � ÿk$pc and svdt � ÿ k
d

sptn: �21�

We note that the assumption about a discontinuous pressure in the present formulation di�ers from the
work of Armero and Callari (1999). In their formulation truly discontinuous ®elds are chosen for the
displacement and the ¯uid ¯ow. Across the discontinuity surface the pressure ®eld is chosen continuous.
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3.2. Condition for the existence of regularized strong discontinuity

In order to establish the conditions that must be satis®ed in order for a strong discontinuity to appear,
we consider the continuity of the momentum and mass conservation relations, as expressed in Eqs. (1)
and (2).

Assuming that the body force is continuous, it must be required due to linear momentum conservation
that

$ � _�rjx�x� ÿ $ � _�rjx�x0
� 0 �22�

which leads to the (usual) traction continuity condition:

n � s _�rt � 0: �23�
Likewise, we formulate the condition for continuity of the mass conservation across C in terms of Eq. (2) as

�$ � _u� $ � vd�jx�x� ÿ �$ � _u� $ � vd�jx�x0
� 0 �24�

which yields

ÿ f
d

n � s _utÿ h
d

n � svdt � 0: �25�

Finally, on introducing Eq. (20) into Eq. (23) and Eq. (21) into Eq. (24), we obtain a localization condition
(� condition for the existence of regularized discontinuities) that represents momentum and mass con-
servation for our porous material as follows:

1

d
QC � s _utÿ s _ptn � ÿn � sEt : _ec;

n � s _utÿ 4n � svdt � 0:
�26�

We emphasize that this condition must be satis®ed at the onset of localization as well as in the post-
localized range. In Eq. (26), we introduced QC as the acoustic tensor associated with the e�ective material,
i.e., QC � n � E�x0� � n.

A thorough investigation of condition (26) is carried out in Larsson and Larsson (2000). It turns out
that when the underlying drained material signals localization, an unstable situation is at hand where an
imperfection causes growth of pressure and displacement discontinuities. Consequently, singularity of QC

is taken as the proper localization condition in the coupled situation. To this end, it should be noted that
the predictions of Eq. (26) are closely related to the ones presented in Rudnicki (1983). Other contributions
that have arrived at the conclusion that it is the drained localization condition that signals localization in
the coupled case are Rice (1975) and Loret and Prevost (1991). In contrast to these ®ndings, Benallal and
Comi (1997) study the condition for loss of ellipticity of the time-discretized initial boundary value
problem. Here, the condition for ill-posedness is derived by seeking equal wave form solutions of the
displacement and pore pressure. In the case of explicit forward integration, which essentially corresponds to
a rate analysis, the conclusion is that loss of ellipticity occurs for singularity of the undrained acoustic
tensor.

4. Mixed weak formulation with embedded discontinuities

We consider the weak formulation for a domain B with external boundary oB which is occupied by ¯uid
saturated porous material. The external boundary, with outward unit normal �n, is divided into two parts
in two di�erent ways. On one hand, the boundary oB is divided into two mutually exclusive parts ouB
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(prescribed skeleton displacement) and otB (prescribed total traction) such that ouB [ otB � oB. On the
other hand, oB is divided into two mutually exclusive parts opB (prescribed pore ¯uid pressure) and oqB
(prescribed ¯uid volume ¯ux) such that opB [ oqB � oB. For the establishment of weak equations incor-
porating embedded discontinuities in displacement and pressure, we generalize the developments in Larsson
et al. (1996) for the undrained continuum to the partly drained situation. In the sequel below, the enhanced
strain approach is the key feature, which was originally proposed by Simo and Rifai (1990). To this end, let
U ; Pc be the spaces of admissible displacement and pressure variations, de®ned in a standard fashion as

U :� fu0c 2 H 1�B� : u0c � 0 on ouBg;
Pc :� fp0c 2 H 1�B� : p0c � 0 on opBg: �27�

Further, we shall denote by E, Ev, S, V, P, and N the spaces of admissible strain, volumetric strain, e�ective
stress, Darcian velocity, pressure and pressure gradient, respectively. In particular, we may set tentatively

E � Ev � S � V � P � N :� L2�B�: �28�
The sets of weak equations are then proposed as follows:Z

B
e0c : sdXÿ W ext

u �u0c� � 0; e0c � �$
 u0c�sym 8u0c 2 U ;Z
B

s0 : �ec ÿ e�dX � 0 8s0 2 S;Z
B

e0 : �ÿs� rÿ p1�dX � 0 8e0 2 E;

�29�

Z
B

g0c � wdXÿ
Z

B
p0c _cdXÿ W ext

p �p0c� � 0 8p0c 2 Pc g0c � $p0c;Z
B

c0�pc ÿ p�dX � 0 8c0 2 Ev;Z
B

w0 � �gc ÿ g�dX � 0 8w0 2 V ;Z
B

g0 � �ÿw� vd�dXÿ
Z

B
p0�ÿ _c� _ev�dX � 0 8p0 2 P 8g0 � $p0 2 N :

�30�

Here, Eq. (29) represents the balance of linear momentum, where s is the total stress ®eld and e, the total
strain ®eld. Eq. (30) represents the balance of mass where c is the volumetric strain ®eld; w, the relative ¯uid
¯ow; g, the total pressure gradient and ev � tr�e�. The external virtual work quantities are given by

W ext
u �u0c� �

Z
B

u0c � q̂gdX�
Z

otB
u0c ��tdC;

W ext
p �p0c� �

Z
oqB

p0c�qdC;
�31�

where �q � vd � �n is the ¯uid volume ¯ux (out¯ow) and �t � �r � �n, the total prescribed traction, with �n being
the outward unit normal of oB.

The variational ®elds e0 2 E; p0 2 P and g0 2 N are considered decomposed into the structure:

e0 � e0c � ~e0 2 U � ~E with e0c � �$
 u0c�sym
;

p0 � p0c � ~p0 2 Pc � ~P ;

g0 � g0c � ~g0 2 $Pc � ~N with g0c � $pc;

�32�
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where ~e0 2 ~E represents the enhanced portion of the total strain. As to the enhanced quantities in Eq. (32),
we are guided by Eqs. (15) and (18) to de®ne ~e0 2 ~E; ~p0 2 ~P and ~g0 2 ~N as

~e0 � ~e0c � dC�n
 m0�sym;

~p0 � ~p0c � dCq0;

~g0 � ~g0c � $�dCq0�:
�33�

Here, m0 is a displacement-like discontinuity and q0, a pressure-like discontinuity (de®ned per unit internal
surface C). We note that these expressions have meaning only in a distributional sense. Upon introducing
the decompositions (32) and (33) into Eqs. (29) and (30), the weak form of momentum balance, kinematic
compatibility and constitutive compatibility is obtained asZ

B
e0c : �r�e� ÿ p1�dXÿ W ext

u �u0� � 0 8u0c 2 U ; �34a�
Z

B
s0 : ~edX � 0; 8s0 2 S; �34b�

Z
B

~e0 : �ÿs� r�e� ÿ p1�dX � 0; 8~e0 2 ~E: �34c�

Similarly, the weak form of mass balance, weak format of compatibility of ¯uid pressure ®eld, weak format
of constitutive compatibility is given byZ

B
g0c � vd dXÿ

Z
B

p0c _ev dXÿ W ext
p �p0c� � 0; 8p0c 2 Pc; �35a�

Z
B

c0~p dX � 0; 8c0 2 Ev; �35b�
Z

B
w0 � ~gdX � 0; 8w0 2 V ; �35c�

Z
B

~g0 � �ÿw� vd�dXÿ
Z

B
~p0�ÿ _c� _ev�dX � 0; 8~g0 2 ~N ; 8 ~p0 2 ~P : �35d�

Pertinent to the enhanced strain approach, we choose S and ~E, EV and ~P , as well as V and ~N orthogonal in
L2�X�. This leads toZ

B
s0 : ~e0 dX � 0 8s0 2 S 8~e0 2 ~E; �36a�

Z
B

c0~p0 dX � 0 8c0 2 Ev 8 ~p0 2 ~P ; �36b�
Z

B
w0 � ~g0 dX � 0 8w0 2 V 8~g 2 ~N : �36c�

We now conclude that Eqs. (34b), (35b) and (35c) are identically satis®ed. This means that s, c and w may
be eliminated in Eqs. (34c) and (35d), respectively. Hence, we may rephrase the equilibrium equation (34) asZ

B
e0c : �r�e� ÿ p1�dXÿ W ext

u �u0c� � 0 8u0c 2 U ; �37a�
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Z
B

~e0 : �r�e� ÿ p1�dX � 0 8~e0 2 ~E; �37b�

In the same fashion, using the orthogonality conditions (36a)±(36c), the mass balance (35a)±(35d) is re-
written asZ

B
g0c � vd dXÿ

Z
B

p0c _ev dXÿ W ext
p �p0c� � 0 8p0c 2 Pc; �38a�

Z
B

~g0 � vd dXÿ
Z

B
~p0 _ev dX � 0 8~g0 2 ~N ; 8 ~p0 2 ~P : �38b�

5. Finite-element procedure

5.1. Finite-element formulation

The region B is considered discretized into FEs Xe; e � 1; . . . ; NEL. For a speci®c element, the com-
patible displacement and ¯uid pressure ®elds along with the appropriate gradients are interpolated by using
the standard compatible shape functions, i.e.,

uce �
XNOEL

I�1

N I
uûI

e; ece � �uce 
 $�sym �
XNOEL

I�1

�ûI
e 
mI

u�sym
with mI

u � $N I
u;

pce �
XNOEL

I�1

NI
pp̂I

e; gce � $pce �
XNOEL

I�1

p̂I
em

I
p with mI

p � $N I
p;

�39�

where NI
u and ûI

e are the (displacement) shape function and nodal displacement of node I of the element,
respectively. Likewise, NI

p and p̂I
e are the (pressure) shape function and nodal pressure of node I of the

element, respectively. In the following, we shall as base element restrict to a triangular element with
quadratic shape functions for the displacement and linear for the pressure i.e., NOEL � 6; 3 for the dis-
placement and pressure, respectively (Fig. 3).

Fig. 3. Enhanced mixed triangular element. The base element has quadratic interpolation for displacement and linear for pressure. The

enhanced ®elds are piecewise constant.
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5.1.1. Momentum balance
The FE approximation of ~e and s is proposed as

s �
XNEL

e�1

vese; ~ec �
XNEL

e�1

ve~ece; m �
XNEL

e�1

veme; �40�

where ve is de®ned as

ve � 1 if x 2 Xe;
0 otherwise:

�
�41�

In particular, we consider the choice that the quantities related to the enhanced strain be piecewise constant
within each Xe such that se is a constant. Upon inserting these FE-approximations into Eqs. (36a) and
(37b), we obtain the ``orthogonality'' condition that must be satis®ed elementwise:Z

Xe

~e0ce : s0e dX�
Z

Ce

�ne 
 m0e�sym : s0e dC � 0; e � 1; . . . ;NEL; �42a�

Z
Xe

~e0ce : �rÿ pe1�dX�
Z

Ce

m0e�rÿ pe1� � ne dC � 0; e � 1; . . . ;NEL: �42b�

Since ne is constant within each element, we obtain from Eq. (42a)

~e0ce � ÿ
1

le
�m0e 
 ne�sym

with le � Ae

Le
; Ae � m�Xe�; Le � m�Ce�: �43�

Hence, Eq. (42b) becomes

m0e �
�
ÿ 1

le

Z
Xe

�rÿ pe1� � ne dX�
Z

Ce

�rÿ pe1� � ne dC

�
� 0; e � 1; . . . ;NEL: �44�

5.1.2. Mass conservation
Quantities related to enhanced pressure and pressure gradient are chosen piecewise constant within each

Xe such that

c �
XNEL

e�1

vece; ~pc �
XNEL

e�1

ve ~pce; q �
XNEL

e�1

veqe;

~gc �
XNEL

e�1

ve~gce; w �
XNEL

e�1

vewe:

�45�

Upon inserting these FE approximations into Eqs. (36b), (36c) and (38b), we obtainZ
Xe

c0e ~p0e dX �
Z

Xe

c0e ~p0ce dX�
Z

Ce

c0eq
0
e dC � 0; e � 1; . . . ;NEL; �46�

Z
Xe

w0e � ~g0e dX �
Z

Xe

w0e � ~g0ce dX�
Z

Xe

we � r�dCq0e�dX

�
Z

Xe

w0e � ~g0ce dXÿ
Z

Ce

r � w0eq0e dC�
Z

oXe

w0e � dCq0e�ne dC � 0; �47�
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Z
Xe

~g0e � vd dXÿ
Z

Xe

~p0e _eve dX �
Z

Xe

~g0ce � vd dXÿ
Z

Ce

q0er � vd dC�
Z

oXe

dCq0e�ne � vd dCÿ
Z

Xe

~p0ce _eve dX

ÿ
Z

Ce

q0e _edC� 0; �48�

where �ne is the outward unit normal vector of the element boundary. Since ~pce, qe and we are elementwise
constant ®elds, we obtain from Eqs. (46) and (47), the relations,

~p0ce � ÿ
1

le
q0e; ~g0ce � ÿ

1

Ae
�noCq0e; �49�

where �noC � �ne�o1Ce� � �ne�o2Ce�, i.e., the sum of unit normal vectors of the element boundary at the end
points of the element-embedded line. Hence, Eq. (48) becomes

q0e
1

le

Z
Xe

_eve dX

�
ÿ
Z

Ce

_eve dCÿ
Z

Ce

r � vd dCÿ 1

Ae

Z
Xe

�noC � vd dX� �noC � vd

�
� 0 for e � 1; . . . ;NEL:

�50�

5.1.3. Regularization of singular ®elds
In contrast to the variational ®elds, the actual enhanced ®elds are chosen to have the regularized form in

accordance with the development of the regularized strong discontinuities for the continuum in Section 3.1.
In view of Eqs. (33) and (49), we thus consider element approximation in terms of compatible and regu-
larized enhanced ®elds such that

ee � ece � 1

d
f

�
ÿ d

le

�
�ne 
 sute�sym ) _eve � _evce � 1

d
f

�
ÿ d

le

�
ne � s _ute; �51a�

pe � pce � f
�
ÿ d

le

�
spte; �51b�

vd � ÿk $pce

�
� g

d
nespte

�
� vd;c � gsvdt with svdt � ÿ k

d
sptene; �51c�

$ � vd � ÿk $ � $pce

�
� h

d2
spte

�
� $ � vd;c � h

d
ne � svdt; �51d�

where sute, spte are the displacement discontinuity and pressure discontinuity parameters of the element,
respectively. Moreover, f(n), g(n) and h(n) are the regularization functions given in Fig. 2. We note that,
given the regularized strain, the stress rate response of the element can be derived in complete analogy with
the continuum situation in Eq. (17).

Up to this point, the formulation is general in terms of dimension of the problem and choice of
displacement/pressure-based base element. However, in the subsequent developments, we explicitly in-
troduce properties of the chosen element, (Fig. 3). We note in particular, from Eq. (51c) and (51d), that
vd;c is constant whereby $ � vd;c � 0. In view of Eqs. (51c) and (13), this leads to that the two last terms
in Eq. (50) are identical and will thus vanish from this equation. Hence, we consider Eq. (50) restated
as

q0e
1

le

Z
Xe

_eve dX

�
ÿ
Z

Ce

_eve dCÿ
Z

Ce

h
d

ne � svdtdC

�
� 0; e � 1; . . . ;NEL: �52�
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5.2. Finite element equations

Upon inserting the preceding FE discretizations into Eqs. (37a), (38a), (44) and (50), we obtain the
discretized formulation:

A
NEL

e�1
�be ÿ fext

ue � � 0; �53a�

A
NEL

e�1
�ce ÿ fext

pe � � 0; �53b�

re � 0; e � 1; . . . ;NEL; �53c�

se � 0; e � 1; . . . ;NEL; �53d�

where Eqs. (53a) and (53b) are the global momentum and mass balance and Eqs. (53c) and (53d) are solved
locally and represents momentum and mass balance across the element-embedded band. Subsequently, we
introduce the backward Euler method for the temporal integration. The internal node forces and local
traction/mass balance are given by

be � A
6

I�1
u

Z
Xe

�rÿ pe1� �mI
u dX;

ce � A
3

I�1
p

Z
Xe

�DtmI
p � vd ÿN I

pDeve�dX;

re �
Z

Ce

�rÿ pe1� � ndCÿ 1

le

Z
Xe

�rÿ pe1�ndX;

se �
Z

Ce

Deve dCÿ 1

le

Z
Xe

Deve dXÿ Dt
Z

Ce

4

d
svdt � ndC;

�54�

whereas the external node forces are de®ned as

fext
ue � A

6

I�1
u

Z
Xe

N I
uq̂bdX� A

6

I�1
u

Z
Ce

N I
u
�tdC;

fext
pe � A

3

I�1
p

Z
Xe

DtNI
p �qdX:

�55�

In Eqs. (53a) and (54), we introduced the assembly operators A, Au and Ap. The operator A determine the
position in the global FE vector, where the element contribution ®ts are based on the global nodal-element
topology. The element internal operators, e.g., Au on the other hand, determines the position of each local
contribution within the element vector from the local node topology, i.e., Au de®nes the identity,

XNOEL

I�1

�mI
u 
 uI

e�sym : r � ût
e Au

NOEL

I�1
mI

u � r
� �

; �56�

where the vector ûe contains the element-nodal displacement variables. Likewise, the vector p̂e contains the
element-nodal pressure variables.
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5.3. Solution procedure

5.3.1. Tangent relation
The non-linear equations (53) are conveniently solved using Newton±Raphson method, whereby the

proper linearization of Eq. (54) is required. For this purpose, we ®rst note that

dbe � A
6

I�1
u

Z
Xe

�drÿ dpe1� �mI
u dX; �57a�

dce � A
3

I�1
p

Z
Xe

�DtmI
p � dvd ÿ NI

p deve�dX; �57b�

dre �
Z

Ce

�drÿ dpe1� � ne dCÿ 1

le

Z
Xe

�drÿ dpe1� � ne dX; �57c�

dse �
Z

Ce

deve dCÿ 1

le

Z
Xe

deve dCÿ Dt
Z

Ce

4

d
dsvdt � ne dC; �57d�

where

dr � A
6

I�1
uE �mI

u

� �
dûe � 1

d
f

�
ÿ d

le

�
ne � E � dsute; �58a�

dpe � A
3

I�1
pN I

p

� �
dp̂e � f

�
ÿ d

le

�
dspte; �58b�

deve � A
6

I�1
umI

u

� �
dûe � 1

d
f

�
ÿ d

le

�
ne � dsute; �58c�

dvd � ÿ A
3

I�1
pkmI

p

� �
dp̂e � g dsvdt; �58d�

dsvdt � ÿ k
d

ne dspte: �58e�

In view of Eqs. (57) and (58), the element tangent sti�ness formally takes the form:

dbe

dce

dre

dse

2664
3775 �

Ku
e Ce Fe Pe

C0e Kp
e Ge 0

F0e G0e He Se

P0e 0 S0e De

2664
3775

dûe

dp̂e

dsute
dspte

2664
3775; �59�

where it may be noted that the sti�ness matrix is unsymmetric due to the di�erence in the enhanced
variational and the enhanced actual ®elds. In Eq. (59), the various elements are de®ned as

Ku
e � A

6

I�1
u A

6

J�1
u

Z
Xe

mI
u � E �mJ

udX; �60a�

Kp
e � ÿA

3

I�1
p A

3

J�1
p

Z
Xe

DtkmI
p �mJ

p dX; �60b�
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Ce � ÿA
6

I�1
u A

3

J�1
p

Z
Xe

mI
uNJ

p dX; C0e � ÿA
3

I�1
p A

6

J�1
u

Z
Xe

N I
pmJ

u dX � CT
e ; �60c�

He �
Z

Ce

1

d

�
ÿ 1

le

�
ne � E � ne dC�

Z
Xe

1

l2
e

ne � E � ne dX; �60d�

Ge � A
3

I�1
p

Z
Xe

1

le
N I

pne dX; G0e � A
3

I�1
p

�
ÿ
Z

Ce

N I
pne dC�

Z
Xe

1

le
NI

pne dX

�
; �60e�

Fe � ÿA
6

I�1
u

Z
Xe

1

le
mI

u � E � ne dX; �60f�

F0e � A
6

I�1
u

Z
Ce

ne � E �mI
u dC

�
ÿ
Z

Xe

1

le
ne � E �mI

u dX

�
; �60g�

De �
Z

Ce

Dt
4k

d2
dC; �60h�

Se � ÿ
Z

Ce

ne dC; S0e �
Z

Ce

1

d
ne dC; �60i�

Pe � A
6

I�1
u

Z
Xe

d
le

mI
u dX; P0e � A

6

I�1
u

Z
Ce

mI
u dC

�
ÿ
Z

Xe

1

le
mI

u dX

�
: �60j�

5.3.2. Overall solution algorithm (global problem)
In the actual FE computations, displacement and pressure discontinuities are condensed at element level

by partial inversion of Eq. (59) such that the resulting set of equations contains only displacement and
pressure variables of the ``base'' element approximation. Moreover, as compared to a standard partial
inversion of the local element problems, we adopt a slightly di�erent procedure where the local equations
are solved completely for each global iterate. The procedure is similar to that in Simo et al. (1993a) and may
be outlined as follows: the improved incremental nodal solution for time t � tn�1 is obtained from

Dûi�1
e

Dp̂i�1
e

" #
� Dûi

e
Dp̂i

e

" #
� ne; e � 1; . . . ;NEL; �61�

where the iterative improvement ne is evaluated as
(1) solve �sut�i�e ; spt�i�e � from

r�i�e � 0;
s�i�e � 0;

�
e � 1; . . . ;NEL; �62a�

(2) then solve ne from

A
NEL

e�1
K̂ene

h
� g�i�e

i
� 0; �62b�

where K̂e is the partly inverted element sti�ness and g�i�e is the out-of-balance force with respect to the global
equations, de®ned as
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K̂e � Ku
e Ce

C0e Kp
e

� �
ÿ Fe Pe

Ge 0

� �
He Se

S0e De

� �ÿ1
F0e G0e
P0e 0

� �
; g�i�e � b�i�e

c�i�e

� �
ÿ fext

ue
fext

pe

� �
: �63a; b�

In Eq. (63b) the external action is the one evaluated at time t � tn�1. We emphasize that in the algorithm
given in Eqs. (61) and (62), the local element problems are solved with ®xed node quantities.

5.3.3. Discrete version of condition for onset of localization
Let us assess the condition for onset of localization for the discretized problem. Given equilibrated nodal

variables ûe and p̂e at time t � tn�1 from the algorithm in Eqs. (61) and (62), the tangent relation for the
local problem becomes

dre

dse

� �
� He Se

S0e De

� �
dsute
dspte

� �
; �64�

In the situation of onset of localization, the state is continuous within each element, and assuming that the
tangent sti�ness is constant within an element, it is possible to evaluate the integrals in the expression for
the tangent matrix in Eq. (64) such that

dre � Le

d
QC � dsute ÿ Lendspte � 0;

dse � Le

d
n � dsute ÿ 4Dt

Le

d
n � dsvdte � 0:

�65�

This is the discretized version of the condition for the onset of localization for the continuum mixture Eq.
(26). Obviously, the condition for localization in the discretized problem coincides with the continuum
situation if the ATS tensor is replaced with the CTS tensor. In fact, in Larsson and Larsson (1999) the
sensitivity to the temporal discretization was studied for an undrained porous medium. It appears that
onset of localization for the integrated response occurs prematurely as compared to the corresponding
predictions of the rate response.

5.3.4. Element solution algorithm (local problems)
As alluded to in Eqs. (61) and (62a,b), we resort to a staggered solution procedure where the local

problems are solved completely for every global iteration. The reason for this is to maintain control of the
loading situation within an element. In the standard coupled procedure, the element condition will not be
satis®ed until global equilibrium is reached. This means that a certain loading situation must be assumed a
priori (at the beginning of each time step) and the validity of the assumption cannot be checked until the
time step is solved. The algorithm to solve the element problems (62a) is based on loading scenarios that can
appear within the element (Larsson and Larsson, 1999).

The algorithm for solving the element problem is brie¯y summarized as follows: as long as an element is
elastic, it is identical to the base continuum element. When plastic loading is ®rst detected, we ®rst solve for
a discontinuous solution assuming plastic loading within the embedded line and elastic loading in the most
stressed integration point belonging to the area integral. When this solution is reached, the validity of the
assumption is checked by determining if the state is admissible. If this is the case, the solution is accepted
and we may proceed to the next element. If this is not the case, the element problem is solved once again,
now allowing plastic loading in all integration points. We note that this algorithm does not make use of the
localization condition (26). The reason for this is that even if a singularity of the acoustic tensor is detected
in an integration point, it does not always follow that a localized solution within the element is possible.
Hence, it appears that an algorithm like the one described above is needed anyway.

The element-embedded line is positioned by the condition that it goes through the integration point of
the base element where the trial yield function takes the largest positive value. The direction of the em-
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bedded line is then evaluated by means of a bifurcation analysis of the constitutive model for the e�ective
material using the latest converged e�ective stress, compare discussion in Section 3.2. Once localization has
occurred in an element, the line is held ®xed throughout the analysis. Since the orientation of the embedded
line is unknown prior to the analysis, we do not know at this stage the state history in the integration points
of the line integral. Thus, we must somehow determine the state for the previous time station in the new
integration points. In the present algorithm, the state for the last time station is evaluated with use of total
deformation theory. Another possibility would be to use linear interpolation from the integration points of
the area integral.

6. Representative examples

6.1. Preliminaries

In the subsequent examples, a generalized Mohr±Coulomb model with the options of non-associated
plastic ¯ow and cohesive, isotropic hardening/softening is used to describe the solid phase response. The
yield criterion and plastic ¯ow potential are given as

u�r� � a1r1 � a2r2 � a3r3 ÿ K 6 0 with r1 P r2 P r3 and K � 2ccosU;

u��r� � a�1r1 � a�2r2 � a�3r3;
�66�

where ri are the principal e�ective stress components and

a1 � 1� 2ÿ a
2� a

sinU; a2 � 1� 2a
2� a

sinU; a3 � ÿ1� sinU;

a�i � ai � 1

3
�b� ÿ 1�avol; b� � sinU�

sinU
; avol � a1 � a2 � a3:

�67�

Here, c is the cohesion, U is the angle of internal friction and U� the dilatancy angle. The parameter
06 a6 1 govern the shape of the yield criterion and plastic potential in the deviator plane and is de®ned
such that a � 0 gives the classical Mohr±Coulomb and a � 1 the Tresca shape. A detailed description of the
model and the consequent consistent linearization is given in Larsson and Runesson (1996b). Hardening/
softening is introduced via the cohesion c � c�j�. In the numerical simulations, we use for simplicity an-
alytical expressions to determine bifurcation directions where the vertices of the MC-yield surface are not
taken into account.

As to the choice of d, the lower limit of d is given by the computer precision. The upper limit is given by
the condition that it should be small in relation to the characteristic dimension of the boundary value
problem. In the subsequent examples, the choice of the shear band width d is made to ful®ll the above
requirements and to be in a reasonable order of magnitude of developing shear bands in slope failures. For
the e�ect of varying d in the numerical results we refer to Larsson and Runesson (1996a).

6.2. Compressed sheet in plane strain ± objectivity w.r.t. mesh and element size

As is well known, if one adopt softening to represent a damage process in a standard FE formulation
with local rate-independent plasticity, the plastic dissipation strongly depends on the element size. In fact,
as the element size tend to zero, the plastic dissipation will also tend to zero, corresponding to in®nitely
brittle behavior. To study the performance of the proposed element in this respect, we analyze a plane strain
sheet with geometry, material and model parameters as given in Fig. 4. To obtain a small stress concen-
tration, a small geometric imperfection is introduced at the upper right point of the sheet (Fig. 4). The
material parameters and boundary conditions are chosen to simulate a drained material. This choice is
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made because this is obviously the situation where the mesh sensitivity is most pronounced (Schre¯er et al.,
1998). Thus, the permeability is set to a very large value and the excess pore pressure is prescribed to zero
along the boundary. The analyses are made with three di�erent meshes (Fig. 5).

The load±time/displacement curves (Fig. 6) shows a quite good match between the three meshes.
Moreover, the deformation patterns in Fig. 7 and the active localized elements in Fig. 8 shows that the same
localization mode is captured for the three meshes. Hence, although not exhibiting complete mesh inde-
pendence, in view of the obtained results, the formulation appears to behave well in this respect. For
comparison, the problem was also analyzed with the same material parameters but with the base element of
the present formulation for the ®nest mesh. We note the inability of the standard element to pick up lo-
calization in the present example. This is apparently because the softening modulus is so small relative to
the elastic modulus and the size of the elements.

Fig. 4. Geometry, boundary conditions and material parameters for analyzed compressed plane strain sheet. An imperfection is in-

troduced at the upper right point, which is slightly displaced to the left.

Fig. 5. Di�erent meshes used in simulations of compressed plane strain sheet.
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6.3. Slope in plane strain ± in¯uence of friction angle on limit load and localization mode

It is of interest to study the signi®cance of the friction angle to the localization properties, such as
orientation of the developing shear band and bearing capacity of the structure. To do this, we consider a
steep slope with geometry, boundary conditions and material parameters as shown in Fig. 9. Note that
the softening behavior is preceded by hardening, corresponding to a ductile material failure. The load is

Fig. 6. Load±time/displacement curves obtained with the three di�erent meshes shown in Fig. 5. For comparison also an analysis using

the base continuum element with the ®nest mesh is shown.

Fig. 7. Deformed meshes of the compressed plane strain sheet at ®nal time step. The undeformed meshes are shown in Fig. 5.
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a prescribed vertical displacement of a point on the rigid footing. The position of this point is on the upper
surface and 0.3 m to the right from the center of the footing (Fig. 9). For simplicity, the contact between the
footing and the soil is assumed to be perfectly rough.

Fig. 8. Currently localized elements at the ®nal time step for the three di�erent meshes given in Fig. 5. The element-embedded lines are

also shown.

Fig. 9. Geometry, boundary conditions, and material parameters for analyzed steep slopte in plane strain. The slope is analyzed for

four di�erent friction angles.
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Four simulations are performed with friction angles set to U � 1:1°, 11.5°, 17.5°, 23.6°. The deformed
meshes that were obtained are shown in Fig. 10. It appears, as expected, that by increased friction angle the
``radius'' of an inscribed circle segment in the shear band zone increases. For U � 23:6°, it appears at ®rst
that a localization mode similar to that of a foundation failure develops, but suddenly propagation of the
®nal shear band takes over Fig. 10d. The corresponding load±time/displacement curves are given in Fig. 11.
Here, we can see that the limit load increases as the friction angle becomes larger. Moreover, it appears that
the structure behaves more brittle at failure for large friction angles.

Fig. 10. Deformed meshes obtained with di�erent internal friction angles U for the steep slope in Fig. 9.
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6.4. Slope in plane strain ± in¯uence of global drainage conditions on limit load

It is of interest to study the e�ect of the magnitude of the pore pressure prevailing in the soil mass on the
limit load. To this end, the same slope with the same mesh as in the previous example is analyzed. The
boundary conditions and material parameters are given in Fig. 12. The boundary conditions for the mass
balance is that the boundary is impermeable except where the pressure is prescribed (Fig. 12). Apart from
this pressure, the loading consists of a prescribed vertical displacement as in the previous example. The
analyses are performed for four di�erent choices of prescribed excess pore pressure: �p � 1 kPa, �p � 2 kPa,
�p � 4 kPa and �p � 8 kPa.

From the load±time/displacement curves in Fig. 13, we can see that as the prescribed excess pore pressure
is increased the limit load decreases. This is expected because for a given external load, when increasing the
excess pore pressure, the e�ective stress state is forced towards the vertex in the cone of admissible states,
thus, losing shear strength. The deformed meshes are not shown here but they are very similar for the
di�erent analyses.

6.5. Slope in plane strain ± in¯uence of local drainage conditions on limit load and localization mode

To study the in¯uence of local drainage conditions on the localization properties, we reconsider the steep
slope analyzed in the two previous examples for various values of the permeability parameter. The slope,
with geometry, boundary conditions and material parameters is shown in Fig. 14. The boundary is im-
permeable and displacements are zero along the lower and right sides.

In view of the load±time/displacement curves in Fig. 15, we obtain an increased and ``delayed'' peak load
in the case of low permeability as compared to the case of high permeability. For comparison, an analysis
using the base element is also given. It is noteworthy that using the continuum element gives no limit load in

Fig. 11. Load±displacement curves from simulations of the steep slope given in Fig. 9 for various friction angles U.
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Fig. 12. Geometry, boundary conditions and material parameters for analyzed steep slope in plane strain. The slope is analyzed for

di�erent prescribed excess pressures on part of boundary.

Fig. 13. Load±time/displacement curves from simulations of the steep slope shown in Fig. 12 for di�erent prescribed ¯uid pressure �p on

part of the boundary. The boundary pressure is applied linearly such that the ®nal value is reached in 5 s.
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this case. From the deformed meshes in Fig. 16, we can see that the localization mode is signi®cantly af-
fected by the permeability coe�cient. It seems that the tendency is that the radius of inscribed ``circle
segment'' along the shear band tends to be larger as the permeability parameter decreases. We emphasize
that the ¯uid is incompressible, whereby the mixture as a whole also becomes incompressible in the limit as
the permeability tends to zero. As a result, our element appears to have limitations in how small magnitude
of the permeability we can choose. In the present example, convergence problems were encountered for
values smaller than k � 6� 10ÿ9 m2=�pa s�.

Fig. 14. Geometry, boundary conditions and material parameters for analyzed steep slope in plane strain. The slope is analyzed for

various permeabilities.

Fig. 15. Load±displacement curves from analyses for various permeabilities.
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In Fig. 17, the ¯uid ¯ow at the ®nal load step is shown for k � 1� 10ÿ7 m2=�pa s�. Here, we can see that,
although the outer boundary is impermeable, a ¯uid ¯ow towards the shear band is obtained. This result
have been obtained by several others (Loret and Prevost, 1991; Schre¯er et al., 1996, 1998), and is due to
the dilatation in the shear band which makes the ¯uid pressure drop in this region.

7. Concluding remarks

In the present paper, we have discussed a FE method that can handle the condition for existence and
development of regularized discontinuities in the displacement and the excess pore pressure ®elds. A key

Fig. 16. Deformed meshes for various permeability. The boundary is impervious.
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feature in the establishment of weak equations is the enhanced strain approach (Simo and Rifai, 1990),
whereby regularized discontinuities in displacement and pressure can be conveniently embedded in FEs. As
a result, besides the global equilibrium and mass balance, local element problems concerning mass balance
and traction continuity across the embedded localization band are formulated. It is shown that, under
certain circumstances, the element behavior recovers continuum behavior with respect to the discontinuity
development (Section 5.3.3).

By a staggering between the continuous structure problem and the discontinuous element problems, an
algorithm was developed for the discontinuity evaluation based on loading scenarios. The algorithm can
handle situations where onset of localization is preceded by di�use plastic deformation, and the formulation
is shown to work well in terms of the ability to capture localization of skeleton deformation and pore ¯uid
pressure. The orientation of the embedded band is chosen so that its normal coincides with the bifurcation
direction of the underlying ``e�ective'' material, described by the constitutive law for the e�ective stress.
This choice is made in view of the rate analysis in Larsson and Larsson (2000), where it was concluded that
it is the constitutive law for the e�ective stress that governs the onset of localization. Thus, even for choices
of the permeability parameter that corresponds to an almost undrained situation, we do not consider using
the orientation for the completely undrained situation (Runesson et al., 1996). Furthermore, the embedded
band is positioned within the element in such a way that it goes through the, at the onset, most stressed
integration point.

The simulations shows that the FE method has good properties regarding mesh dependence. However,
the method is not completely insensitive to the mesh topology. A mesh alignment procedure would probably
improve the method in this respect. In the parameter studies the sensitivity w.r.t. local and global drainage
conditions is studied. The in¯uence of the friction angle to the localization properties was also studied.
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